论文标题

Hurwitz Moduli品种参数化代数曲线的GALOIS封面

Hurwitz moduli varieties parameterizing Galois covers of an algebraic curve

论文作者

Kanev, Vassil

论文摘要

鉴于我们研究平滑,投射的曲线$ y $,有限的集团$ g $和一个正整数$ n $,我们研究流畅,适当的家庭$ x \ y \ times s \ to y \ times s \ to $ y $的$ y $的s $,以及galois group group insomorphic insomorphic to $ g $ n $ n $分支,分支为$ n $,由algebraic verailes $ n $ $ n $ n $ n $分支。当$ g $与微不足道的中心一起使用时,我们证明Hurwitz Space $ h^g_n(y)$是这个模量问题的典范变体,并明确构建了通用家庭。对于任意$ g $,我们证明$ h^g_n(y)$是一个粗糙的模量品种。对于$(y,y_0)$的尖头盖式封面的家庭,我们证明Hurwitz Space $ h^g_n(y,y_0)$是一种精美的模型品种,并明确构建了通用家庭,用于任意$ g $。我们使用代数拓扑的经典工具和复杂的代数几何形状。

Given a smooth, projective curve $Y$, a finite group $G$ and a positive integer $n$ we study smooth, proper families $X\to Y\times S\to S$ of Galois covers of $Y$ with Galois group isomorphic to $G$ branched in $n$ points, parameterized by algebraic varieties $S$. When $G$ is with trivial center we prove that the Hurwitz space $H^G_n(Y)$ is a fine moduli variety for this moduli problem and construct explicitly the universal family. For arbitrary $G$ we prove that $H^G_n(Y)$ is a coarse moduli variety. For families of pointed Galois covers of $(Y,y_0)$ we prove that the Hurwitz space $H^G_n(Y,y_0)$ is a fine moduli variety, and construct explicitly the universal family, for arbitrary group $G$. We use classical tools of algebraic topology and of complex algebraic geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源