论文标题
自发运动阈值附近的化学活性粒子的弱非线性动力学。 I.伴随方法
Weakly nonlinear dynamics of a chemically active particle near the threshold for spontaneous motion. I. Adjoint method
论文作者
论文摘要
在本系列中,我们研究了自发运动阈值附近的化学活性颗粒的弱非线性动力学。在这一部分中,我们专注于稳定的解决方案,并开发了一种“伴随方法”,用于推导管理粒子速度的非线性振幅方程,首先假设在各向同性化学活性粒子的文献中是规范模型,然后考虑对该模型的一般扰动。与以前的工作一样,振幅方程是从粒子尺度弱的弱非线性膨胀的二阶问题上的溶解性条件获得的,该问题的表述涉及渐近匹配与对流和扩散平衡的远程区域中的渐进式解决方案。我们基于Fredholm的替代参数开发了广义的解决性条件,该参数需要在阈值下识别伴随线性操作员并计算其内核。这避免了早期理论的明显需求解决二阶不均匀问题,从而使大量简化并通过使广泛的扰动场景共同治疗,从而增加了洞察力。为了说明我们的方法,我们得出了许多扰动场景(外部力和扭矩场,不均匀的表面特性,一阶表面动力学和大量吸收)的振幅方程,这表明在阈值较弱的弱扰动附近可以显着修改和丰富稳定解决方案的景观。
In this Series, we study the weakly nonlinear dynamics of chemically active particles near the threshold for spontaneous motion. In this part, we focus on steady solutions and develop an `adjoint method' for deriving the nonlinear amplitude equation governing the particle's velocity, first assuming the canonical model in the literature of an isotropic chemically active particle and then considering general perturbations about that model. As in previous works, the amplitude equation is obtained from a solvability condition on the inhomogeneous problem at second order of a particle-scale weakly nonlinear expansion, the formulation of that problem involving asymptotic matching with a leading-order solution in a remote region where advection and diffusion are balanced. We develop a generalised solvability condition based on a Fredholm Alternative argument, which entails identifying the adjoint linear operator at the threshold and calculating its kernel. This circumvents the apparent need in earlier theories to solve the second-order inhomogeneous problem, resulting in considerable simplification and adding insight by making it possible to treat a wide range of perturbation scenarios on a common basis. To illustrate our approach, we derive and solve amplitude equations for a number of perturbation scenarios (external force and torque fields, non-uniform surface properties, first-order surface kinetics and bulk absorption), demonstrating that sufficiently near the threshold weak perturbations can appreciably modify and enrich the landscape of steady solutions.