论文标题

基于神经网络的OFDM接收器,用于资源受限的IoT设备

Neural Network-based OFDM Receiver for Resource Constrained IoT Devices

论文作者

Soltani, Nasim, Cheng, Hai, Belgiovine, Mauro, Li, Yanyu, Li, Haoqing, Azari, Bahar, D'Oro, Salvatore, Imbiriba, Tales, Melodia, Tommaso, Closas, Pau, Wang, Yanzhi, Erdogmus, Deniz, Chowdhury, Kaushik

论文摘要

正交频道多路复用(OFDM)的波形用于许多当前和新兴物联网(IoT)应用程序(包括最新的WiFi标准)中的通信链接。对于基于OFDM的收发器,为通道类型和调制方案等的特定选择实现了与通道估计,拆卸和解码有关的许多核心物理层功能。为了使接收器链中的硬连线选择取消连接的选择,从而在许多新颖的情况下增强了物联网部署的灵活性,而不会更改底层硬件,我们探索了一种新颖的,模块化的机器学习(ML)基于基于的接收器链设计。在这里,ML块替换了OFDM接收器的单个处理块,我们专门描述了使用神经网络(NNS)的传统通道估计,符号删除和解码块的交换。这种模块化设计的一个独特方面是为遗留或ML块提供了灵活的处理功能分配,从而使它们可以互换共存。此外,我们通过修剪和量化来研究资源约束的物联网设备中提出的NN的实施成本效益,以及在现场可编程门阵列(FPGA)中对这些压缩NN的仿真。我们的评估表明,拟议的基于NN的接收器分别对模拟和空中数据集的平均61%和10%提高了传统非ML接收器的位错误率。我们通过在传统算法和提出的压缩NN之间提出计算复杂性比较,进一步显示出复杂性 - 性能的权衡。

Orthogonal Frequency Division Multiplexing (OFDM)-based waveforms are used for communication links in many current and emerging Internet of Things (IoT) applications, including the latest WiFi standards. For such OFDM-based transceivers, many core physical layer functions related to channel estimation, demapping, and decoding are implemented for specific choices of channel types and modulation schemes, among others. To decouple hard-wired choices from the receiver chain and thereby enhance the flexibility of IoT deployment in many novel scenarios without changing the underlying hardware, we explore a novel, modular Machine Learning (ML)-based receiver chain design. Here, ML blocks replace the individual processing blocks of an OFDM receiver, and we specifically describe this swapping for the legacy channel estimation, symbol demapping, and decoding blocks with Neural Networks (NNs). A unique aspect of this modular design is providing flexible allocation of processing functions to the legacy or ML blocks, allowing them to interchangeably coexist. Furthermore, we study the implementation cost-benefits of the proposed NNs in resource-constrained IoT devices through pruning and quantization, as well as emulation of these compressed NNs within Field Programmable Gate Arrays (FPGAs). Our evaluations demonstrate that the proposed modular NN-based receiver improves bit error rate of the traditional non-ML receiver by averagely 61% and 10% for the simulated and over-the-air datasets, respectively. We further show complexity-performance tradeoffs by presenting computational complexity comparisons between the traditional algorithms and the proposed compressed NNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源