论文标题
在跨量子机学习中利用对称性
Exploiting symmetry in variational quantum machine learning
论文作者
论文摘要
变分量子机学习是经过广泛研究的近期量子计算机的应用。变性量子学习模型的成功取决于找到与学习任务相关的电感偏见的模型的合适参数化。但是,关于构建合适参数化的指导原则知之甚少。在这项工作中,我们整体探讨了学习问题的何时以及如何对称性,以在学习任务的对称性下构建具有结果不变的量子学习模型。在代表理论的工具基础上,我们展示了如何将标准门的转换为尊重栅极对称过程中问题的对称性的模棱两可的门口。我们基于两个玩具问题基准的方法,这些玩具问题具有非平凡的对称性,并观察到概括性能的大幅提高。由于我们的工具也可以直接地应用于与对称结构的其他变异问题,因此我们展示了如何在变异量子eigensolvers中使用模糊的门。
Variational quantum machine learning is an extensively studied application of near-term quantum computers. The success of variational quantum learning models crucially depends on finding a suitable parametrization of the model that encodes an inductive bias relevant to the learning task. However, precious little is known about guiding principles for the construction of suitable parametrizations. In this work, we holistically explore when and how symmetries of the learning problem can be exploited to construct quantum learning models with outcomes invariant under the symmetry of the learning task. Building on tools from representation theory, we show how a standard gateset can be transformed into an equivariant gateset that respects the symmetries of the problem at hand through a process of gate symmetrization. We benchmark the proposed methods on two toy problems that feature a non-trivial symmetry and observe a substantial increase in generalization performance. As our tools can also be applied in a straightforward way to other variational problems with symmetric structure, we show how equivariant gatesets can be used in variational quantum eigensolvers.