论文标题

$ {\ cal o}(αα_s)$更正到$ h \ to zz^*$

Master integrals for ${\cal O}(αα_s)$ corrections to $H \to ZZ^*$

论文作者

Chaubey, Ekta, Kaur, Mandeep, Shivaji, Ambresh

论文摘要

我们介绍了与$ {\ Mathcal O}(αα_S)$虚拟校正到$ h \ rightarrow zz^*$ decay相关的所有Feynman积分的分析结果。我们使用微分方程的方法来求解主积分,同时保持对包括内部传播器在内的所有粒子的质量的完全依赖。由于存在四个质量尺度,我们遇到了多个平方根。我们认为,所有发生的正方形根部都不能同时合理化,因为同时合理化使我们成为了$ CY_3 $歧管的积分。因此,我们仅同时合理地对三个平方根进行合理化,并在获得微分方程的epsilon-farticriend形式后,构建合适的Ansätze以获得包含平方根的DLOG形式。我们介绍出现在微分方程解决方案中的所有边界常数的字母和分析形式。主积分的结果是根据陈的迭代积分与DLOG一式形式表示的。

We present analytic results for all the Feynman integrals relevant for ${\mathcal O}(αα_s)$ virtual corrections to $H \rightarrow ZZ^*$ decay. We use the method of differential equations to solve the master integrals while keeping the full dependence on the masses of all the particles including internal propagators. Due to the presence of four mass scales we encounter multiple square roots. We argue that all the occurring square roots can not be rationalized at the same time as a simultaneous rationalization brings us to integrals over $CY_3$ manifolds. Hence we rationalize only three square roots simultaneously and construct suitable ansätze to obtain dlog-forms containing the square root, after obtaining an epsilon-factorised form for the differential equations. We present the alphabet and the analytic form of all the boundary constants that appear in the solutions of the differential equations. The results for master integrals are expressed in terms of Chen's iterated integrals with dlog one-forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源