论文标题
量子纠缠的平均能力
Average capacity of quantum entanglement
论文作者
论文摘要
作为纠缠熵的替代方案,纠缠的能力成为探测和估计量子两分系统纠缠程度的有前途的候选人。在这项工作中,我们研究了主要模型的纠缠能力的典型行为。特别是,在希尔伯特·史密特(Hilbert-Schmidt)和布尔斯(Bures Hall)合奏下,平均容量的确切和渐近公式已得出。获得的公式概括了文献最近计算出的平均能力的一些部分结果。作为得出结果的关键要素,我们利用与基础正交多项式和特殊功能有关的随机矩阵理论的最新进展。已经进行了数值研究,以说明平均能力作为纠缠指标的有用性。
As an alternative to entanglement entropies, the capacity of entanglement becomes a promising candidate to probe and estimate the degree of entanglement of quantum bipartite systems. In this work, we study the typical behavior of entanglement capacity over major models of random states. In particular, the exact and asymptotic formulas of average capacity have been derived under the Hilbert-Schmidt and Bures-Hall ensembles. The obtained formulas generalize some partial results of average capacity computed recently in the literature. As a key ingredient in deriving the results, we make use of recent advances in random matrix theory pertaining to the underlying orthogonal polynomials and special functions. Numerical study has been performed to illustrate the usefulness of average capacity as an entanglement indicator.