论文标题
大虾种植深度学习:预测和异常检测
Deep Learning for Prawn Farming: Forecasting and Anomaly Detection
论文作者
论文摘要
我们提出了一个决策支持系统,用于管理大虾池塘中的水质。该系统以新颖的方式使用各种数据来源和深度学习模型,以提供24小时的预测和水质参数的异常检测。它为大虾农民提供了积极避免不良生长环境的工具,从而优化了增长并降低了损失库存的风险。对于被迫通过反应纠正较差的水质条件来管理池塘的农民来说,这是一个重大转变。据我们所知,我们是第一个将变压器应用于异常检测模型的人,也是第一个将异常检测应用于这种水产养殖问题的人。我们的技术贡献包括适应多变量数据和适应变压器的预测和注意力模型,以将天气预报数据纳入解码器。我们获得溶解氧预测的平均平均绝对百分比误差为12%,我们证明了两个异常检测案例研究。该系统已成功运行在商业大虾农场的第二年。
We present a decision support system for managing water quality in prawn ponds. The system uses various sources of data and deep learning models in a novel way to provide 24-hour forecasting and anomaly detection of water quality parameters. It provides prawn farmers with tools to proactively avoid a poor growing environment, thereby optimising growth and reducing the risk of losing stock. This is a major shift for farmers who are forced to manage ponds by reactively correcting poor water quality conditions. To our knowledge, we are the first to apply Transformer as an anomaly detection model, and the first to apply anomaly detection in general to this aquaculture problem. Our technical contributions include adapting ForecastNet for multivariate data and adapting Transformer and the Attention model to incorporate weather forecast data into their decoders. We attain an average mean absolute percentage error of 12% for dissolved oxygen forecasts and we demonstrate two anomaly detection case studies. The system is successfully running in its second year of deployment on a commercial prawn farm.