论文标题
AK:细心的信息收集的内核
AK: Attentive Kernel for Information Gathering
论文作者
论文摘要
机器人信息收集(RIG)依赖于概率模型的不确定性来确定有效数据收集的关键领域。具有固定核的高斯工艺(GPS)已被广泛用于空间建模。但是,现实世界的空间数据通常不满足平稳性的假设,因为假定不同位置具有相同程度的可变性。结果,预测不确定性不能准确捕获预测误差,从而限制了钻机算法的成功。我们提出了一个新颖的非机构核心家族,名为Actentive bernel(AK),它很简单,稳健,并且可以将任何现有内核扩展到非平稳的内核。我们在高程映射任务中评估了新内核,在该任务中,AK对常用的RBF内核和其他流行的非平稳核提供了更好的准确性和不确定性量化。改进的不确定性定量指导下游钻机规划师,以收集高误差区域周围的更多有价值的数据,从而进一步提高预测准确性。现场实验表明,所提出的方法可以指导自主地表车辆(ASV)在具有较高空间变化的位置的数据收集优先级,从而使模型能够表征显着的环境特征。
Robotic Information Gathering (RIG) relies on the uncertainty of a probabilistic model to identify critical areas for efficient data collection. Gaussian processes (GPs) with stationary kernels have been widely adopted for spatial modeling. However, real-world spatial data typically does not satisfy the assumption of stationarity, where different locations are assumed to have the same degree of variability. As a result, the prediction uncertainty does not accurately capture prediction error, limiting the success of RIG algorithms. We propose a novel family of nonstationary kernels, named the Attentive Kernel (AK), which is simple, robust, and can extend any existing kernel to a nonstationary one. We evaluate the new kernel in elevation mapping tasks, where AK provides better accuracy and uncertainty quantification over the commonly used RBF kernel and other popular nonstationary kernels. The improved uncertainty quantification guides the downstream RIG planner to collect more valuable data around the high-error area, further increasing prediction accuracy. A field experiment demonstrates that the proposed method can guide an Autonomous Surface Vehicle (ASV) to prioritize data collection in locations with high spatial variations, enabling the model to characterize the salient environmental features.