论文标题

超新星残留物与原子和分子云的令人震惊的相互作用 - 冲击,热稳定性和重力之间的相互作用

Shocking interactions of supernova remnants with atomic and molecular clouds -- the interplay between shocks, thermal instability and gravity in the large cloud regime

论文作者

Kupilas, M. M., Pittard, J. M., Wareing, C. J., Falle, S. A. E. G.

论文摘要

使用自适应网格改进代码MG,我们对“大云制度”中的超新星云相互作用进行3D流体动力模拟。云最初是原子质的,并且由于热不稳定性(TI)和重力而发展。我们在存在冷和密集的团块时研究“前TI”和“ TI后”阶段的相互作用,并将这些结果与“小型云制度”中理想化的冲击云场景进行比较,而没有冲击的情况。在总体上,由于超新星撞击是瞬时而不是连续的,超新星的破坏明显弱于理想化的冲击。在两个超新星云的交互中,我们都观察到两次冲击会影响云,然后开发云界面上的10 km S $^{ - 1} $上游流量,以及全球环境压力下降。当云仍然是原子时,由于此下降,它会扩展。此外,将Ti触发在云的前部,导致形成类似盖的结构,内部嵌入了团块。上游流在该区域收敛,从而导致叶状云形态。当云是分子时,传输的冲击会破坏薄层间的材料,并导致团块的外包膜略微膨胀并形成尾状形态。这些效果不及我们的冲击云场景中的效果,而且更明显的是在我们未经震惊的情况下。 3.5 Myrs之后,尽管全球环境压力下降,但超新星衰变和云的影响与未震动的云层几乎无法区分。在两种超新星云的情况下,我们都会看到任何局部引力崩溃。

Using the adaptive mesh refinement code MG, we perform 3D hydrodynamic simulations of a supernova-cloud interaction in the "large cloud regime". The cloud is initially atomic and evolving due to the thermal instability (TI) and gravity. We study interactions in a "pre-TI" and "post-TI" stage when cold and dense clumps are present, and compare these results to idealised shock-cloud scenarios in the "small cloud regime", and a scenario without shocks. On aggregate, the supernova disruption is significantly weaker than that from an idealised shock due to the supernova impact being instantaneous, and not continuous. In both supernova-cloud interactions, we observe two shocks impact the cloud, followed by the development of a weak 10 km s$^{-1}$ upstream flow on the cloud interface, and a global ambient pressure drop. When the cloud is still atomic, it expands due to this drop. Additionally, the TI is triggered at the front of the cloud, causing the formation of a cap-like structure with clumps embedded inside. The upstream flow converges in this region, resulting in a lobe-like cloud morphology. When the cloud is molecular, the transmitted shock disrupts the inter-clump material and causes the clumps' outer envelopes to expand slightly and form tail-like morphologies. These effects are less pronounced than those in our shock-cloud scenarios, and more pronounced that those in our un-shocked scenario. After 3.5 Myrs, the effects from the supernova decay and the cloud returns to an almost indistinguishable state from an un-shocked cloud, in spite of the global ambient pressure drop. In neither supernova-cloud scenario do we see any local gravitational collapse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源