论文标题

母马:语义供应链破坏管理和弹性评估框架

MARE: Semantic Supply Chain Disruption Management and Resilience Evaluation Framework

论文作者

Ramzy, Nour, Auer, Soren, Ehm, Hans, Chamanara, Javad

论文摘要

供应链(SC)受到破坏性事件的约束,可能会阻碍运营绩效。破坏管理过程(DMP)依赖于对综合的异构数据源(例如生产计划,订单管理和物流)的分析来评估中断对SC的影响。现有方法是有限的,因为它们以相当孤立的方式解决DMP过程步骤和相应的数据源,从而使SC中源自任何地方的中断的中断系统处理。因此,我们提出了MARE的语义破坏管理和弹性评估框架,以集成所有DMP步骤中包含的数据源,即监视/模型,评估,恢复和评估。母马,利用语义技术,即本体论,知识图和SPARQL查询来建模和重现破坏性场景下的SC行为。此外,MARE还包括一个评估框架,以检查采用各种恢复策略的SC的恢复性能。 MARE提出的语义SC DMP使利益相关者可以潜在地确定增强SC集成,提高供应网络的弹性并最终促进数字化的措施。

Supply Chains (SCs) are subject to disruptive events that potentially hinder the operational performance. Disruption Management Process (DMP) relies on the analysis of integrated heterogeneous data sources such as production scheduling, order management and logistics to evaluate the impact of disruptions on the SC. Existing approaches are limited as they address DMP process steps and corresponding data sources in a rather isolated manner which hurdles the systematic handling of a disruption originating anywhere in the SC. Thus, we propose MARE a semantic disruption management and resilience evaluation framework for integration of data sources included in all DMP steps, i.e. Monitor/Model, Assess, Recover and Evaluate. MARE, leverages semantic technologies i.e. ontologies, knowledge graphs and SPARQL queries to model and reproduce SC behavior under disruptive scenarios. Also, MARE includes an evaluation framework to examine the restoration performance of a SC applying various recovery strategies. Semantic SC DMP, put forward by MARE, allows stakeholders to potentially identify the measures to enhance SC integration, increase the resilience of supply networks and ultimately facilitate digitalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源