论文标题
Riemann Zeta功能的零元素的质量定理和成对相关性
The Prime Number Theorem and Pair Correlation of Zeros of the Riemann Zeta-Function
论文作者
论文摘要
我们证明,可以通过使用Montgomery的猜想版本来定量改善质数定理中的误差,以超出Riemann假设的限制,以将Riemann Zeta函数的零零相关性与长范围均匀且具有合适的误差项相关。
We prove that the error in the prime number theorem can be quantitatively improved beyond the Riemann Hypothesis bound by using versions of Montgomery's conjecture for the pair correlation of zeros of the Riemann zeta-function which are uniform in long ranges and with suitable error terms.