论文标题

采用正式的尖峰分类算法和硬件评估的方法

Toward A Formalized Approach for Spike Sorting Algorithms and Hardware Evaluation

论文作者

Zhang, Tim, Lammie, Corey, Azghadi, Mostafa Rahimi, Amirsoleimani, Amirali, Ahmadi, Majid, Genov, Roman

论文摘要

尖峰排序算法用于将神经元种群的细胞外记录分为单单元尖峰活动。定制的硬件实施尖峰排序算法的开发正在迅速发展。但是,缺乏系统的方法和一组标准化评估标准,无法直接比较软件和硬件实现。在本文中,我们正式化了一组标准化标准和一个题为“细胞外记录的合成模拟(SSOER)”(SSOER)的公开合成数据集,这些数据是通过汇总具有不同信噪比(SNRS)的现有合成数据集来构建的。此外,我们提出了一个基准,用于将来比较,并使用我们的标准评估模拟的电阻性随机访问记忆(RRAM)内存计算(IMC)系统系统,使用离散小波转换(DWT)进行特征提取。我们的系统大约消耗(通过通道)10.72兆瓦,在22nm FDSOI互补的金属氧化物 - 氧化物 - 副导体(CMOS)过程中,面积为0.66mm $^2 $。

Spike sorting algorithms are used to separate extracellular recordings of neuronal populations into single-unit spike activities. The development of customized hardware implementing spike sorting algorithms is burgeoning. However, there is a lack of a systematic approach and a set of standardized evaluation criteria to facilitate direct comparison of both software and hardware implementations. In this paper, we formalize a set of standardized criteria and a publicly available synthetic dataset entitled Synthetic Simulations Of Extracellular Recordings (SSOER), which was constructed by aggregating existing synthetic datasets with varying Signal-To-Noise Ratios (SNRs). Furthermore, we present a benchmark for future comparison, and use our criteria to evaluate a simulated Resistive Random-Access Memory (RRAM) In-Memory Computing (IMC) system using the Discrete Wavelet Transform (DWT) for feature extraction. Our system consumes approximately (per channel) 10.72mW and occupies an area of 0.66mm$^2$ in a 22nm FDSOI Complementary Metal-Oxide-Semiconductor (CMOS) process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源