论文标题

人类可信神经模型的非媒体样参数激活函数

Uninorm-like parametric activation functions for human-understandable neural models

论文作者

Csiszár, Orsolya, Pusztaházi, Luca Sára, Dénes-Fazakas, Lehel, Gashler, Michael S., Kreinovich, Vladik, Csiszár, Gábor

论文摘要

我们提出了一个深度学习模型,用于在输入特征之间找到人类的可理解联系。我们的方法基于Nilpotent模糊逻辑和多准则决策(MCDM)的理论背景,使用参数化的,可区分的激活函数。可学习的参数具有语义含义,指示输入特征之间的补偿水平。神经网络使用梯度下降来确定参数,以在输入特征之间找到人为理解的关系。我们通过成功将其应用于UCI机器学习存储库中的分类问题来证明模型的实用性和有效性。

We present a deep learning model for finding human-understandable connections between input features. Our approach uses a parameterized, differentiable activation function, based on the theoretical background of nilpotent fuzzy logic and multi-criteria decision-making (MCDM). The learnable parameter has a semantic meaning indicating the level of compensation between input features. The neural network determines the parameters using gradient descent to find human-understandable relationships between input features. We demonstrate the utility and effectiveness of the model by successfully applying it to classification problems from the UCI Machine Learning Repository.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源