论文标题
较高的互惠定律和三元线性复发序列
Higher Reciprocity Laws and Ternary Linear Recurrence Sequences
论文作者
论文摘要
我们描述了在某些不可减至的三级多项式的非亚洲分裂场中完全分裂的质子数。作为应用程序,我们建立了通过Primes $ p $的相关三元复发序列的一些分裂性能,因此大大扩展了Evink和Helminck和Faisant的最新工作。我们还证明了关于复发序列模型$ p的特征方程的解决方案的数量,扩展并简化了Zhi-hong Sun(2003)的早期作品。
We describe the set of prime numbers splitting completely in the non-abelian splitting field of certain monic irreducible polynomials of degree three. As an application we establish some divisibility properties of the associated ternary recurrence sequence by primes $p$, thus greatly extending recent work of Evink and Helminck and of Faisant. We also prove some new results on the number of solutions of the characteristic equation of the recurrence sequence modulo $p,$ extending and simplifying earlier work of Zhi-Hong Sun (2003).