论文标题
KG-SP:知识指导的开放世界构图零照片学习
KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning
论文作者
论文摘要
开放世界组成的零光学习(OW-CZSL)的目的是识别图像中状态和对象的组成,只有在训练过程中仅有一个子集,而在看不见的构图中也没有事先。在这种情况下,模型在一个巨大的输出空间上运行,其中包含所有可能的状态对象组成。尽管以前的作品通过共同学习构图来解决问题,但在这里,我们重新审视了一个简单的CZSL基线,并独立预测原始词,即状态和物体。为了确保模型开发特定于原始的特征,我们为状态和对象分类器配备了单独的非线性特征提取器。此外,我们在从输出空间中删除不可行的构图之前,使用本知识来估算每个组成的可行性。最后,我们提出了一个新的设置,即在部分监督下(PCZSL),其中仅在培训期间可用对象或状态标签,我们可以在估算丢失的标签之前使用我们的。我们的模型,知识引导的简单原始图(KG-SP)在OW-CZSL和PCZSL中都达到了最新的最新技术,即使与半监督的学习技术相结合,也超过了最新的竞争对手。可用的代码,网址为:https://github.com/explainableml/kg-p。
The goal of open-world compositional zero-shot learning (OW-CZSL) is to recognize compositions of state and objects in images, given only a subset of them during training and no prior on the unseen compositions. In this setting, models operate on a huge output space, containing all possible state-object compositions. While previous works tackle the problem by learning embeddings for the compositions jointly, here we revisit a simple CZSL baseline and predict the primitives, i.e. states and objects, independently. To ensure that the model develops primitive-specific features, we equip the state and object classifiers with separate, non-linear feature extractors. Moreover, we estimate the feasibility of each composition through external knowledge, using this prior to remove unfeasible compositions from the output space. Finally, we propose a new setting, i.e. CZSL under partial supervision (pCZSL), where either only objects or state labels are available during training, and we can use our prior to estimate the missing labels. Our model, Knowledge-Guided Simple Primitives (KG-SP), achieves state of the art in both OW-CZSL and pCZSL, surpassing most recent competitors even when coupled with semi-supervised learning techniques. Code available at: https://github.com/ExplainableML/KG-SP.