论文标题

Pocket2mol:基于3D蛋白质口袋的有效分子采样

Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets

论文作者

Peng, Xingang, Luo, Shitong, Guan, Jiaqi, Xie, Qi, Peng, Jian, Ma, Jianzhu

论文摘要

近年来,深层生成模型在设计新型药物分子方面取得了巨大的成功。一系列新的作品表明,通过考虑蛋白质口袋的结构来提高硅药物设计的特异性和成功率的巨大潜力。该设置发布了对可以满足口袋施加的多种几何约束的新化学化合物的基本计算挑战。以前的采样算法要么在图形空间中采样,要么仅考虑原子的3D坐标,同时忽略其他详细的化学结构,例如键类型和官能团。为了应对挑战,我们开发了Pocket2mol,一个由两个模块组成的E(3) - 等效性生成网络:1)一个新的图形神经网络,捕获了具有约束力口袋的原子之间的空间和粘结关系和2)新的有效算法,该算法是在不依赖于MCMC的无依赖分布的袋装中,以新的药物候选人的身份进行样品,以示例新的药物候选人。实验结果表明,从Pocket2mol采样的分子实现了更好的结合亲和力和其他药物特性,例如药物液化性和合成可及性。

Deep generative models have achieved tremendous success in designing novel drug molecules in recent years. A new thread of works have shown the great potential in advancing the specificity and success rate of in silico drug design by considering the structure of protein pockets. This setting posts fundamental computational challenges in sampling new chemical compounds that could satisfy multiple geometrical constraints imposed by pockets. Previous sampling algorithms either sample in the graph space or only consider the 3D coordinates of atoms while ignoring other detailed chemical structures such as bond types and functional groups. To address the challenge, we develop Pocket2Mol, an E(3)-equivariant generative network composed of two modules: 1) a new graph neural network capturing both spatial and bonding relationships between atoms of the binding pockets and 2) a new efficient algorithm which samples new drug candidates conditioned on the pocket representations from a tractable distribution without relying on MCMC. Experimental results demonstrate that molecules sampled from Pocket2Mol achieve significantly better binding affinity and other drug properties such as druglikeness and synthetic accessibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源