论文标题
基于矩阵的Renyi熵的最佳随机近似
Optimal Randomized Approximations for Matrix based Renyi's Entropy
论文作者
论文摘要
基于矩阵的Renyi的熵使我们能够直接从给定数据中测量信息数量,而无需对基础分布的昂贵概率密度估计,因此在众多统计学习和推理任务中已被广泛采用。但是,确切地计算此新信息数量需要访问半阳性(SPD)矩阵$ a $的特征光谱,该矩阵$ a $与样本$ n $的数量线性增长,从而导致$ O(n^3)$时间复杂性,这对于大型应用程序而言是较大的。为了解决这个问题,本文利用了基于矩阵的雷耶熵的随机跟踪近似,该熵具有随意的$α\在r^+$ orders中,从而通过将熵近似转换为矩阵矢量乘法问题来降低复杂性。具体而言,我们为非企业$α$ case的整数订单$α$ cases和多项式系列近似(Taylor和Chebyshev)开发随机近似,从而导致$ O(N^2SM)$总体时间复杂性,其中$ s,m \ ll n $表明矢量Queries and the polynomial corder and the polynomial cormisty上。我们从理论上为所有近似算法建立统计保证,并相对于近似误差$ \ varepsilon $给出了S和M的明确顺序,这显示了两个参数的最佳收敛速率,最高为对数因子。大规模的模拟和现实世界应用验证了开发近似值的有效性,表明准确性损失可忽略不计。
The Matrix-based Renyi's entropy enables us to directly measure information quantities from given data without the costly probability density estimation of underlying distributions, thus has been widely adopted in numerous statistical learning and inference tasks. However, exactly calculating this new information quantity requires access to the eigenspectrum of a semi-positive definite (SPD) matrix $A$ which grows linearly with the number of samples $n$, resulting in a $O(n^3)$ time complexity that is prohibitive for large-scale applications. To address this issue, this paper takes advantage of stochastic trace approximations for matrix-based Renyi's entropy with arbitrary $α\in R^+$ orders, lowering the complexity by converting the entropy approximation to a matrix-vector multiplication problem. Specifically, we develop random approximations for integer order $α$ cases and polynomial series approximations (Taylor and Chebyshev) for non-integer $α$ cases, leading to a $O(n^2sm)$ overall time complexity, where $s,m \ll n$ denote the number of vector queries and the polynomial order respectively. We theoretically establish statistical guarantees for all approximation algorithms and give explicit order of s and m with respect to the approximation error $\varepsilon$, showing optimal convergence rate for both parameters up to a logarithmic factor. Large-scale simulations and real-world applications validate the effectiveness of the developed approximations, demonstrating remarkable speedup with negligible loss in accuracy.