论文标题

预测下游任务性能的流形特征

Manifold Characteristics That Predict Downstream Task Performance

论文作者

van der Merwe, Ruan, Newman, Gregory, Barnard, Etienne

论文摘要

通常通过评估线性分类器的准确性,转移学习绩效或视觉检查表示歧管(RM)的下二维预测来比较预处理方法。我们表明,通过直接研究RM可以更清楚地理解方法之间的差异,从而可以进行更详细的比较。为此,我们提出了一个框架和新指标,以衡量和比较不同的RMS。我们还研究并报告了各种预训练方法的RM特征。这些特征是通过使用白噪声注射和投影梯度下降(PGD)对抗性攻击的依次较大的局部变化来衡量的,然后跟踪每个数据点。我们计算每个数据点的总距离以及连续变更之间距离的相对变化。我们表明,自我监督的方法学习了一个RM,其中改变会导致较大但恒定的尺寸变化,这表明RM比完全监督的方法更顺畅。然后,我们将这些测量值组合为一个指标,即表示歧管质量度量(RMQM),其中较大的值表明较大且较小的变量步骤尺寸,并表明RMQM与下游任务上的性能呈正相关。

Pretraining methods are typically compared by evaluating the accuracy of linear classifiers, transfer learning performance, or visually inspecting the representation manifold's (RM) lower-dimensional projections. We show that the differences between methods can be understood more clearly by investigating the RM directly, which allows for a more detailed comparison. To this end, we propose a framework and new metric to measure and compare different RMs. We also investigate and report on the RM characteristics for various pretraining methods. These characteristics are measured by applying sequentially larger local alterations to the input data, using white noise injections and Projected Gradient Descent (PGD) adversarial attacks, and then tracking each datapoint. We calculate the total distance moved for each datapoint and the relative change in distance between successive alterations. We show that self-supervised methods learn an RM where alterations lead to large but constant size changes, indicating a smoother RM than fully supervised methods. We then combine these measurements into one metric, the Representation Manifold Quality Metric (RMQM), where larger values indicate larger and less variable step sizes, and show that RMQM correlates positively with performance on downstream tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源