论文标题

高斯条件独立结构的自我粘附性

Selfadhesivity in Gaussian conditional independence structures

论文作者

Boege, Tobias

论文摘要

自我粘附性是熵多膜体的一种特性,可以保证可以将多摩力肌粘合到沿任意限制的同一副本,从而鉴于共同的限制,这两块是独立的。我们表明,阳性确定的矩阵也满足了这种情况,并检查了高斯条件独立性结构的后果。高斯CI的新公理是通过对先前已知的结构半径和可定向的高斯柱的公理来获得的。

Selfadhesivity is a property of entropic polymatroids which guarantees that the polymatroid can be glued to an identical copy of itself along arbitrary restrictions such that the two pieces are independent given the common restriction. We show that positive definite matrices satisfy this condition as well and examine consequences for Gaussian conditional independence structures. New axioms of Gaussian CI are obtained by applying selfadhesivity to the previously known axioms of structural semigraphoids and orientable gaussoids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源