论文标题

在有限弹性方面的多凸功能的各个地方

Everywhere regularity results for a polyconvex functional in finite elasticity

论文作者

Dengler, Marcel

论文摘要

在这里,我们为$ 2 \ times2- $尺寸可压缩的有限弹性开发了polycovex功能的规律性理论。特别是,我们考虑功能$ i(u)= \ int \limits_Ω{\ frac {\ frac {1} {2} | \ nabla u |^2+ρ(\ det \ nabla u) w^{1,2}(ω,\ mathbb {r}^2)$和$ρ:\ m athbb {r} \ rightarrow \ rightArrow \ mathbb {r} _0^+$ spooth and convex and convex and convex with $ρ(s)= 0 $ s)= 0 $ s $ s \ s \ s \ s \ les $ $ p y $ s $ 0. 状况。 我们表明的第一个结果是,每个固定点都需要在本地进行Hölder-Coninuul。其次,我们证明,如果$ \ |ρ'\ | _ {l^\ infty(\ Mathbb {r})} <1 $ S.T.整数仍然是均匀凸的,然后所有固定点必须位于$ w_ {loc}^{2,2}。的确,我们表明,所有固定点是$ w_ {loc}^{2,2} $ and jacobian的所有固定点,其jacobian是适当的hölder-contium,属于$ c_ {loc}^loc}^{\ infty}。 $ \ |ρ'\ | _ {l^\ infty(\ Mathbb {r})} <1 $所有固定点必须平滑。

Here we develop a regularity theory for a polyconvex functional in $2\times2-$dimensional compressible finite elasticity. In particular, we consider energy minimizers/stationary points of the functional $I(u)=\int\limits_Ω{\frac{1}{2}|\nabla u|^2+ρ(\det\nabla u)\;dx},$ where $Ω\subset\mathbb{R}^2$ is open and bounded, $u\in W^{1,2}(Ω,\mathbb{R}^2)$ and $ρ:\mathbb{R}\rightarrow\mathbb{R}_0^+$ smooth and convex with $ρ(s)=0$ for all $s\le0$ and $ρ$ becomes affine when $s$ exceeds some value $s_0>0.$ Additionally, we may impose boundary conditions. The first result we show is that every stationary point needs to be locally Hölder-continuous. Secondly, we prove that if $\|ρ'\|_{L^\infty(\mathbb{R})}<1$ s.t. the integrand is still uniformly convex, then all stationary points have to be in $W_{loc}^{2,2}.$ Next, a higher-order regularity result is shown. Indeed, we show that all stationary points that are additionally of class $W_{loc}^{2,2}$ and whose Jacobian is suitably Hölder-continuous are of class $C_{loc}^{\infty}.$ As a consequence, these results show that in the case when $\|ρ'\|_{L^\infty(\mathbb{R})}<1$ all stationary points have to be smooth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源