论文标题
低分辨率雷达微型多普勒签名接近分布式检测
Near out-of-distribution detection for low-resolution radar micro-Doppler signatures
论文作者
论文摘要
接近分布的检测(OODD)旨在在不需要分类所需的监督的情况下区分语义上相似的数据点。本文提出了一个用于雷达目标的OODD用例,可扩展到其他类型的传感器和检测方案。我们强调了OODD的相关性及其对检测多模式的,多样化的目标类别的特定监督要求,以及其他类似的雷达目标和现实生活中关键系统中的混乱。我们提出了对模拟的低分辨率脉冲雷达微型多普勒特征的深层和非深色OODD方法的比较,考虑了光谱和协方差矩阵输入表示。协方差表示旨在估算专用的二阶处理是否适合区分签名。讨论了标记为训练,自学的学习,对比度学习见解和创新培训损失的潜在贡献,并研究了训练集污染的影响。
Near out-of-distribution detection (OODD) aims at discriminating semantically similar data points without the supervision required for classification. This paper puts forward an OODD use case for radar targets detection extensible to other kinds of sensors and detection scenarios. We emphasize the relevance of OODD and its specific supervision requirements for the detection of a multimodal, diverse targets class among other similar radar targets and clutter in real-life critical systems. We propose a comparison of deep and non-deep OODD methods on simulated low-resolution pulse radar micro-Doppler signatures, considering both a spectral and a covariance matrix input representation. The covariance representation aims at estimating whether dedicated second-order processing is appropriate to discriminate signatures. The potential contributions of labeled anomalies in training, self-supervised learning, contrastive learning insights and innovative training losses are discussed, and the impact of training set contamination caused by mislabelling is investigated.