论文标题

部分可观测时空混沌系统的无模型预测

Non-agency interventions for causal mediation in the presence of intermediate confounding

论文作者

Díaz, Iván

论文摘要

最新的因果推论方法集中在因果效应上,定义为在图形模型节点的假设干预下的反事实结果分布之间的对比。在本文中,我们开发了针对不同类型的干预措施定义的因果效应的理论,该理论会改变图表边缘传播的信息。这些信息传输干预措施可能比原因是不可操纵的设置中的节点干预措施,例如在将种族或遗传学作为因果因素时。此外,信息传输干预措施使我们能够定义特定路径的分解,这些分解在存在治疗引起的调解因子混杂的情况下被鉴定出来,这是一个实际问题,其一般解决方案仍然难以捉摸。我们证明,所提出的效应提供了机制的有效统计检验,与基于调解人的随机干预措施的流行方法不同。我们使用数据自适应回归以及半参数效率理论来解决模型错误指定偏差,同时保留$ \ sqrt {n} $ - 一致性和异常正常,我们提出了提出的效应的协方差估计器的有效非参数估计器,并提出了与半参数效率理论相结合的。我们在两个示例中使用公开数据说明了我们的方法的使用。

Recent approaches to causal inference have focused on causal effects defined as contrasts between the distribution of counterfactual outcomes under hypothetical interventions on the nodes of a graphical model. In this article we develop theory for causal effects defined with respect to a different type of intervention, one which alters the information propagated through the edges of the graph. These information transfer interventions may be more useful than node interventions in settings in which causes are non-manipulable, for example when considering race or genetics as a causal agent. Furthermore, information transfer interventions allow us to define path-specific decompositions which are identified in the presence of treatment-induced mediator-outcome confounding, a practical problem whose general solution remains elusive. We prove that the proposed effects provide valid statistical tests of mechanisms, unlike popular methods based on randomized interventions on the mediator. We propose efficient non-parametric estimators for a covariance version of the proposed effects, using data-adaptive regression coupled with semi-parametric efficiency theory to address model misspecification bias while retaining $\sqrt{n}$-consistency and asymptotic normality. We illustrate the use of our methods in two examples using publicly available data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源