论文标题
部分可观测时空混沌系统的无模型预测
HelixADMET: a robust and endpoint extensible ADMET system incorporating self-supervised knowledge transfer
论文作者
论文摘要
准确的ADMET(用于“吸收,分布,代谢,排泄和毒性”的缩写)预测可以在药物发现的早期阶段有效筛选出不良药物的候选物。近年来,已经开发了采用高级机器学习模型的多种全面的ADMET系统,提供了估计多个终点的服务。但是,那些ADMET系统通常会遭受较弱的外推能力。首先,由于每个端点缺乏标记的数据,典型的机器学习模型对具有未观察到的支架的分子进行了脆弱。其次,大多数系统仅提供固定的内置端点,并且不能定制以满足各种研究要求。为此,我们开发了一个可靠且可扩展的ADMET系统HelixAdmet(H-Admet)。 H-Admet结合了自我监督学习的概念,以产生强大的预训练模型。然后,使用多任务和多阶段框架对模型进行微调,以在ADMET端点,辅助任务和自我监督任务之间传输知识。我们的结果表明,与可比端点上的现有ADMET系统相比,H-Admet的总体改善为4%。此外,可以对Hadmet提供的预训练模型进行微调,以产生新的和定制的ADMET端点,满足对药物研发需求的各种需求。
Accurate ADMET (an abbreviation for "absorption, distribution, metabolism, excretion, and toxicity") predictions can efficiently screen out undesirable drug candidates in the early stage of drug discovery. In recent years, multiple comprehensive ADMET systems that adopt advanced machine learning models have been developed, providing services to estimate multiple endpoints. However, those ADMET systems usually suffer from weak extrapolation ability. First, due to the lack of labelled data for each endpoint, typical machine learning models perform frail for the molecules with unobserved scaffolds. Second, most systems only provide fixed built-in endpoints and cannot be customised to satisfy various research requirements. To this end, we develop a robust and endpoint extensible ADMET system, HelixADMET (H-ADMET). H-ADMET incorporates the concept of self-supervised learning to produce a robust pre-trained model. The model is then fine-tuned with a multi-task and multi-stage framework to transfer knowledge between ADMET endpoints, auxiliary tasks, and self-supervised tasks. Our results demonstrate that H-ADMET achieves an overall improvement of 4%, compared with existing ADMET systems on comparable endpoints. Additionally, the pre-trained model provided by H-ADMET can be fine-tuned to generate new and customised ADMET endpoints, meeting various demands of drug research and development requirements.