论文标题

部分可观测时空混沌系统的无模型预测

Pattern Propagation Driven by Surface Curvature

论文作者

Nishide, Ryosuke, Ishihara, Shuji

论文摘要

弯曲表面上的模式动力学在自然界中无处不在。表面的几何形状已被证明会影响动力学并发挥功能作用,但全面的理解仍然难以捉摸。在这里,我们首次报告说,平坦表面上的静态图纹模式可以在弯曲的表面上传播,而不是先前的研究,在这种研究中,该模式被预设为静态,而与表面几何无关。为了了解弯曲表面的这种重大变化,我们研究了轴对称弯曲表面上的反应扩散系统。数值和理论分析表明,表面的对称性和模式都参与模式传播的启动。这项研究提供了一种新颖而通用的模式传播机制,该机制是由表面曲率引起的,以及对表面几何形状的一般作用的见解。

Pattern dynamics on curved surfaces are found everywhere in nature. The geometry of surfaces have been shown to influence dynamics and play a functional role, yet a comprehensive understanding is still elusive. Here, we report for the first time that a static Turing pattern on a flat surface can propagate on a curved surface, as opposed to previous studies, where the pattern is presupposed to be static irrespective of the surface geometry. To understand such significant changes on curved surfaces, we investigate reaction-diffusion systems on axisymmetric curved surfaces. Numerical and theoretical analyses reveal that both the symmetries of the surface and pattern participate in the initiation of pattern propagation. This study provides a novel and generic mechanism of pattern propagation that is caused by surface curvature, as well as insights into the general role of surface geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源