论文标题

部分可观测时空混沌系统的无模型预测

Anticyclotomic main conjecture and the non-triviality of Rankin-Selberg $L$-values in Hida families

论文作者

Kim, Chan-Ho, Longo, Matteo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The aim of this paper is to prove the two-variable anticyclotomic Iwasawa main conjecture for Hida families and a definite version of the horizontal non-vanishing conjecture, which are formulated in Longo-Vigni. Our approach is based on the two-variable anticyclotomic control theorem for Selmer groups for Hida families and the relation between the two-variable anticyclotomic $L$-function for Hida families built out of $p$-adic families of Gross points on definite Shimura curves studied in Castella-Longo and Castella-Kim-Longo and the self-dual twist of the specialisation to the anticyclotomic line of the three-variable $p$-adic $L$-function of Skinner-Urban.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源