论文标题
关于打结厚度和交易数字的注释
A note on knot Floer thickness and the dealternating number
论文作者
论文摘要
在本说明中,我们简短地证明了打结的厚度是打结数量的下限。结果最初是由于安倍和基希莫托(Kishimoto),Lowrance和Turaev的工作。我们的证明是使用考夫曼指出的对stipsicz-szabo方法的修改,以表明厚度在结图中界定了最小的坏域数量。
In this note, we give a short proof that knot Floer thickness is a lower bound on the dealternating number of a knot. The result is originally due to work of Abe and Kishimoto, Lowrance, and Turaev. Our proof is a modification of the Stipsicz-Szabo approach using Kauffman states to show that thickness bounds the minimal number of bad domains in a knot diagram.