论文标题
与Kaluza-Klein Ansatz的二次曲率模型的尺寸降低和变化程序的兼容性
Compatibility of the Dimensional Reduction and Variation Procedures for a Quadratic Curvature Model with a Kaluza-Klein Ansatz
论文作者
论文摘要
引入额外的维度是将重力与其他物理领域统一的宝贵策略。然而,手头的问题最终将减少到实际的4D时空。 Kaluza-Klein理论也不例外。有两个步骤可以从较高的维度动作获得场方程。一个人可以在较高的维度中采取有效作用的变化,然后减少所得方程,或者将较高的维操作降低到实际的4D,从那以后,就该理论的组成场而变化。在这里,对于具有Kaluza-Klein Ansatz的二次曲率模型的情况,该场方程是通过详细讨论了这两个过程的降低动作和兼容性获得的。
The introduction of extra dimensions is an invaluable strategy for the unification of gravity with other physical fields. Nevertheless, the matter in hand is to be eventually reduced to the actual 4D spacetime. The Kaluza-Klein theory is no exception to this well-known scheme. There are two procedures to obtain the field equations from a higher dimensional action. One can either take the variation of the effective action in that higher dimension and then reduce the resulting equations or reduce the higher dimensional action to the actual 4D and henceforward take the variations with respect to the constituent fields of the theory. Here, for the case of a quadratic curvature model with a Kaluza-Klein ansatz the field equations are obtained from the reduced action and compatibility of these two procedures is discussed in detail.