论文标题
矮人星系中的宇宙射线扩散和多相星际介质。 I.大规模属性和$γ$ -Ray的发光度
Cosmic-ray diffusion and the multi-phase interstellar medium in a dwarf galaxy. I. Large-scale properties and $γ$-ray luminosities
论文作者
论文摘要
在动态上,能量高于一个GEV/核子的宇宙射线可能是星系进化的重要药物。它们的压力与影响银河气体积聚,喷泉和银河流出的热和磁性相比,改变了气相之间的质量循环,其效率取决于不同介质中CR传输的特性。我们旨在研究CRS在改变其传播模式时塑造星系星际介质中的动态作用。我们使用同一孤立星系的演变($ 10^{11}} $ M $ _ {\ odot} $下降到9-PC分辨率的AMR代码公羊的MHD模拟,并比较了最简单的COSMIC-RAY传输均匀扩散假设的影响。我们还使用了Fermi LAT来源的最新发现,更新了$γ$ -Ray的光度与SFR之间看到的观察性关系。我们发现,在改变Cr传输时,不同阶段中气体的径向和垂直分布以及气体的质量分数会略有变化。我们观察到CR的正反馈在银河系内半部分的磁场扩增上,除了快速的各向同性扩散。慢速或各向异性扩散的Cr压力增加可以抑制50 \%的恒星形成,但是宇宙射线压力和磁化的双重效应可以减少因子2.5的恒星形成。模拟星系的$γ$ - 雷光度和SFR完全与观察结果中所看到的趋势一致。 s $^{ - 1} $。因此,这些结果尚未确认非常快的$ 10^{29-31} $ cm $^2 $ s $ s $^{ - 1} $扩散以匹配Fermi Lat观测值的索赔。
Dynamically, cosmic rays with energies above about one GeV/nucleon may be important agents of galaxy evolution. Their pressures compare with the thermal and magnetic ones impacting galactic gas accretion, fountains and galactic outflows, and alter the mass cycling between the gas phases, its efficiency depends on the properties of CR transport in the different media. We aim to study the dynamical role of CRs in shaping the interstellar medium of a galaxy when changing their propagation mode. We perform MHD simulations with the AMR code RAMSES of the evolution of the same isolated galaxy (dwarf galaxy of $10^{11}$ M$_{\odot}$ down to 9-pc resolution) and compare the impact of the simplest cosmic-ray transport assumption of uniform diffusion. We have also updated the observational relation seen between the $γ$-ray luminosities and SFR of galaxies using the latest detection of Fermi LAT sources. We find that the radial and vertical distributions, and mass fractions of the gas in the different phases are marginally altered when changing CR transport. We observe positive feedback of CR on the amplification of the magnetic field in the inner half of the galaxy, except for fast isotropic diffusion. The increase in CR pressure for slow or anisotropic diffusion can suppress star formation by up to 50\%, but the dual effect of cosmic-ray pressure and magnetic amplification can reduce star formation by a factor 2.5. The $γ$-ray luminosities and SFR of the simulated galaxies are fully consistent with the trend seen in the observations in the case of anisotropic $10^{27.5-29}$ cm$^2$ s$^{-1}$ diffusion and for isotropic diffusion slower or equal to $3 \times 10^{28}$cm$^2$ s$^{-1}$. These results, therefore, do not confirm claims of very fast $10^{29-31}$ cm$^2$ s$^{-1}$ diffusion to match the Fermi LAT observations.