论文标题

设计具有内域干扰的双曲线系统的饱和边界控制

Design of saturated boundary control for hyperbolic systems with in-domain disturbances

论文作者

Shreim, Suha, Ferrante, Francesco, Prieur, Christophe

论文摘要

在执行器饱和的效果下,研究了具有内域干扰和边界反馈控制器的一维双曲系统的边界反馈控制设计。非线性半群理论用于证明温和溶液对与闭环系统的适应性良好。在存在内部干扰的情况下,以耗散功能不平等的形式出现了足够的条件,以建立闭环系统的全局稳定性和$ \ Mathcal {l}^2 $ - 稳定性。然后,控制设计问题是在线性矩阵不等式约束上重新铸造的,作为优化问题。证明数值结果可以验证所提出的控制设计的有效性。

Boundary feedback control design is studied for 1D hyperbolic systems with an in-domain disturbance and a boundary feedback controller under the effect of actuator saturation. Nonlinear semigroup theory is used to prove well-posedness of mild solution pairs to the closed-loop system. Sufficient conditions in the form of dissipation functional inequalities are derived to establish global stability for the closed-loop system and $\mathcal{L}^2$-stability in presence of in-domain disturbances. The control design problem is then recast as an optimization problem over linear matrix inequality constraints. Numerical results are shown to validate the effectiveness of the proposed control design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源