论文标题
当无效的能量条件遇到ADM质量时
When null energy condition meets ADM mass
论文作者
论文摘要
我们通过使用无效的能量条件对ADM质量$ M $的下限进行了猜想。猜想包括penrose的不平等$ 3M \geqκ\ Mathcal {a}/(4π)+\ sqrt {\ Mathcal {\ Mathcal {a}/4π} $,Penrose不等式不等式$ 200M \ geq Q QQ \ geq \ geq \ sqrt {事件范围区域和$κ$表面重力。通过施加无效的能量条件,证明了带有球形对称性的动态时空的静态球形对称情况和penrose不平等的猜想。然后,我们将猜想推广到一般的动力学时空。我们的结果对著名的不定性问题在一般相对论中引起了新的挑战:在哪种总体情况下,无效的能源条件可以替代其他能源条件以确保penrose不平等?
We give a conjecture on the lower bound of the ADM mass $M$ by using the null energy condition. The conjecture includes a Penrose-like inequality $3M\geqκ\mathcal{A}/(4π)+\sqrt{\mathcal{A}/4π}$ and the Penrose inequality $ 2M\geq\sqrt{\mathcal{A}/{4π}}$ with $\mathcal{A}$ the event horizon area and $κ$ the surface gravity. Both the conjecture in the static spherically symmetric case and the Penrose inequality for a dynamical spacetime with spherical symmetry are proved by imposing the null energy condition. We then generalize the conjecture to a general dynamical spacetime. Our results raise a new challenge for the famous unsettled question in general relativity: in what general case can the null energy condition replace other energy conditions to ensure the Penrose inequality?