论文标题

伪装中的高斯 - 曼宁连接:开放式gromov-witten不变性

Gauss-Manin connection in disguise: Open Gromov-Witten invariants

论文作者

Espreafico, Felipe

论文摘要

在《镜面对称性》中,在J. Walcher的工作之后,在一般五重的三倍上,在真正的Quintic Lagrangian上具有边界的圆锥形磁盘数量与两种同源理性曲线的边界的镜面Quintic家族的时期有关。遵循H.Movasati的理论,我们构建了一个准式空间参数,以相对DE RHAM共同体的框架和曲线的边界与混合Hodge结构兼容。我们还计算了连接到这种参数化的模块化矢量场。

In mirror symmetry, after the work by J. Walcher, the number of holomorphic disks with boundary on the real quintic lagrangian in a general quintic threefold is related to the periods of the mirror quintic family with boundary on two homologous rational curves. Following the ideias of H.Movasati, we construct a quasi-affine space parametrizing such objects enhanced with a frame for the relative de Rham cohomology with boundary at the curves compatible with the mixed Hodge structure. We also compute a modular vector field attached to such a parametrization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源