论文标题
用于流体弹球的多发仪多传感器系统的机器学习导向流动估计
Machine-learned control-oriented flow estimation for multiactuator multi-sensor systems exemplified for the fluidic pinball
论文作者
论文摘要
我们提出了对多输入多输出工厂的第一个机器学习导向的流动估计。起点是使用开环驱动命令的恒定致动,导致数据库具有同时记录的致动命令,传感器信号和流场。关键启用器是一个估计器输入向量,该向量包括传感器信号和驱动命令。从传感器信号和驱动命令到流场的映射以分析简单,以数据为中心和一般的非线性方法实现。分析简单的估计器将驱动命令的线性随机估计(LSE)推广。以数据为中心的方法通过从数据库中插值来从估计器输入中产生流场 - 类似于Loiseau等。 (2018)未强制性流量。插值与K最近的邻居(KNN)一起进行。从输入到流场的一般全球非线性映射是通过迭代训练方法从深神经网络(DNN)获得的。对流体弹球厂进行了估计器比较,该工厂是多输入的多输出唤醒基准测试基准(Deng等,2020),具有稳定控制下的丰富动力学。我们得出的结论是,机器学习方法显然优于线性模型。 KNN和DNN估计器的性能对于周期性动力学而言是可比的。但是,当流动混乱时,DNN的性能始终如一。此外,提出了有关复杂性,计算成本和预测准确性的详尽比较,以证明每个估计器的相对优点。可以将所提出的方法推广到闭环控制厂。
We propose the first machine-learned control-oriented flow estimation for multiple-input multiple-output plants. Starting point is constant actuation with open-loop actuation commands leading to a database with simultaneously recorded actuation commands, sensor signals and flow fields. A key enabler is an estimator input vector comprising sensor signals and actuation commands. The mapping from the sensor signals and actuation commands to the flow fields is realized in an analytically simple, data-centric and general nonlinear approach. The analytically simple estimator generalizes Linear Stochastic Estimation (LSE) for actuation commands. The data-centric approach yields flow fields from estimator inputs by interpolating from the database -- similar to Loiseau et al. (2018) for unforced flow. The interpolation is performed with k Nearest Neighbors (kNN). The general global nonlinear mapping from inputs to flow fields is obtained from a Deep Neural Network (DNN) via an iterative training approach. The estimator comparison is performed for the fluidic pinball plant, which is a multiple-input, multiple-output wake control benchmark (Deng et al. 2020) featuring rich dynamics under steady controls. We conclude that the machine learning methods clearly outperform the linear model. The performance of kNN and DNN estimators are comparable for periodic dynamics. Yet, DNN performs consistently better when the flow is chaotic. Moreover, a thorough comparison regarding to the complexity, computational cost, and prediction accuracy is presented to demonstrate the relative merits of each estimator. The proposed method can be generalized for closed-loop flow control plants.