论文标题

动态优化织物用于运动

Dynamic Optimization Fabrics for Motion Generation

论文作者

Spahn, Max, Wisse, Martijn, Alonso-Mora, Javier

论文摘要

优化织物是实时局部运动产生的几何方法,其中运动是通过表现出所需运动行为的几个微分方程组成而设计的。我们将该框架推广到动态场景和非全面机器人,并证明可以保留基本属性。我们表明,可以使用组件的简单构造规则来确保融合所需的轨迹和避免移动障碍。此外,我们介绍优化织物和模型预测控制之间的第一个定量比较,并表明优化织物可以生成具有更好可伸缩性的相似轨迹,因此,更高的重新载体频率(具有700 Hz的最高为500 Hz,具有7个自由机器人机器人)。最后,我们在几个机器人上介绍了经验结果,其中包括具有10度自由度和避免移动人类的非独立移动操纵器,支持理论发现。

Optimization fabrics are a geometric approach to real-time local motion generation, where motions are designed by the composition of several differential equations that exhibit a desired motion behavior. We generalize this framework to dynamic scenarios and non-holonomic robots and prove that fundamental properties can be conserved. We show that convergence to desired trajectories and avoidance of moving obstacles can be guaranteed using simple construction rules of the components. Additionally, we present the first quantitative comparisons between optimization fabrics and model predictive control and show that optimization fabrics can generate similar trajectories with better scalability, and thus, much higher replanning frequency (up to 500 Hz with a 7 degrees of freedom robotic arm). Finally, we present empirical results on several robots, including a non-holonomic mobile manipulator with 10 degrees of freedom and avoidance of a moving human, supporting the theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源