论文标题

结肠形式:一种基于有效变压器的结肠息肉分割的方法

ColonFormer: An Efficient Transformer based Method for Colon Polyp Segmentation

论文作者

Duc, Nguyen Thanh, Oanh, Nguyen Thi, Thuy, Nguyen Thi, Triet, Tran Minh, Sang, Dinh Viet

论文摘要

识别息肉对于在计算机辅助临床支持系统中自动分析内窥镜图像的自动分析具有挑战性。已经提出了基于卷积网络(CNN),变压器及其组合的模型,以分割息肉以有希望的结果。但是,这些方法仅在模拟息肉的局部外观方面存在局限性,或者在解码过程中缺乏用于空间依赖性的多层次特征。本文提出了一个新颖的网络,即结肠形式,以解决这些局限性。 Colonformer是一种编码器架构,能够在编码器和解码器分支上对远程语义信息进行建模。编码器是一种基于变压器的轻量级体系结构,用于在多尺度上建模全球语义关系。解码器是一种分层网络结构,旨在学习多层功能以丰富特征表示。此外,添加了一个新的Skip连接技术,以完善整体地图中的息肉对象的边界以进行精确分割。已经在五个流行的基准数据集上进行了广泛的实验,以进行息肉分割,包括Kvasir,CVC-Clinic DB,CVC-ColondB,CVC-T和Etis-Larib。实验结果表明,我们的Colonformer在所有基准数据集上的表现优于其他最先进的方法。

Identifying polyps is challenging for automatic analysis of endoscopic images in computer-aided clinical support systems. Models based on convolutional networks (CNN), transformers, and their combinations have been proposed to segment polyps with promising results. However, those approaches have limitations either in modeling the local appearance of the polyps only or lack of multi-level features for spatial dependency in the decoding process. This paper proposes a novel network, namely ColonFormer, to address these limitations. ColonFormer is an encoder-decoder architecture capable of modeling long-range semantic information at both encoder and decoder branches. The encoder is a lightweight architecture based on transformers for modeling global semantic relations at multi scales. The decoder is a hierarchical network structure designed for learning multi-level features to enrich feature representation. Besides, a refinement module is added with a new skip connection technique to refine the boundary of polyp objects in the global map for accurate segmentation. Extensive experiments have been conducted on five popular benchmark datasets for polyp segmentation, including Kvasir, CVC-Clinic DB, CVC-ColonDB, CVC-T, and ETIS-Larib. Experimental results show that our ColonFormer outperforms other state-of-the-art methods on all benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源