论文标题
了解液体特性估计的动态触觉感测
Understanding Dynamic Tactile Sensing for Liquid Property Estimation
论文作者
论文摘要
人类通过与物体互动来感知世界,这些物体通常以动态的方式发生。例如,人会摇动瓶子以猜测其内容。但是,对于机器人,在接触良好期间了解许多动态信号仍然是一个挑战。本文通过应对估计液体性能的任务来研究动态触觉感测。我们提出了一种关于动态触觉感应的新思考方式:通过基于简化的物理原理构建轻度加权数据驱动的模型。瓶中的液体将在扰动后振荡。我们提出了一个简单的物理风格的模型来解释这种振荡,并使用高分辨率的触觉传感器凝视来感知它。具体而言,粘度和液体的高度决定了振荡的衰减速率和频率。然后,我们对少量实际数据训练高斯过程回归模型,以估计液体性质。实验表明,我们的模型可以以100%精度对三种不同的液体进行分类。该模型可以高精度估算体积,甚至可以估计糖水溶液的浓度。它具有数据效率,可以轻松地推广到其他液体和瓶子。我们的工作对动态触觉信号与液体的动态性能之间的相关性有了物理上启发的理解。我们的方法在简单,准确性和一般性之间取得了良好的平衡。它将帮助机器人在厨房,食品工厂和制药工厂等不同环境中更好地感知液体。
Humans perceive the world by interacting with objects, which often happens in a dynamic way. For example, a human would shake a bottle to guess its content. However, it remains a challenge for robots to understand many dynamic signals during contact well. This paper investigates dynamic tactile sensing by tackling the task of estimating liquid properties. We propose a new way of thinking about dynamic tactile sensing: by building a light-weighted data-driven model based on the simplified physical principle. The liquid in a bottle will oscillate after a perturbation. We propose a simple physics-inspired model to explain this oscillation and use a high-resolution tactile sensor GelSight to sense it. Specifically, the viscosity and the height of the liquid determine the decay rate and frequency of the oscillation. We then train a Gaussian Process Regression model on a small amount of the real data to estimate the liquid properties. Experiments show that our model can classify three different liquids with 100% accuracy. The model can estimate volume with high precision and even estimate the concentration of sugar-water solution. It is data-efficient and can easily generalize to other liquids and bottles. Our work posed a physically-inspired understanding of the correlation between dynamic tactile signals and the dynamic performance of the liquid. Our approach creates a good balance between simplicity, accuracy, and generality. It will help robots to better perceive liquids in different environments such as kitchens, food factories, and pharmaceutical factories.