论文标题

通过高斯随机字段安全编码

Secure Coding via Gaussian Random Fields

论文作者

Bereyhi, Ali, Loureiro, Bruno, Krzakala, Florent, Müller, Ralf R., Schulz-Baldes, Hermann

论文摘要

由严格的非线性高斯随机场给出的生成模型的反可能性问题显示出全或全无的行为:存在贝叶斯推理表现出相变的关键率。低于此速率,最佳贝叶斯估计器完美地恢复了数据,并且在其上方恢复的数据变得不相关。这项研究使用自旋玻璃理论中的复制方法表明,这种临界率是通道容量。这个有趣的发现在安全传输问题上具有特殊的应用:严格的非线性高斯随机字段以及随机套在一起可用于在窃听通道中安全地编码机密消息。我们的大型系统表征表明,这种安全的编码方案渐近地实现了高斯窃听通道的保密能力。

Inverse probability problems whose generative models are given by strictly nonlinear Gaussian random fields show the all-or-nothing behavior: There exists a critical rate at which Bayesian inference exhibits a phase transition. Below this rate, the optimal Bayesian estimator recovers the data perfectly, and above it the recovered data becomes uncorrelated. This study uses the replica method from the theory of spin glasses to show that this critical rate is the channel capacity. This interesting finding has a particular application to the problem of secure transmission: A strictly nonlinear Gaussian random field along with random binning can be used to securely encode a confidential message in a wiretap channel. Our large-system characterization demonstrates that this secure coding scheme asymptotically achieves the secrecy capacity of the Gaussian wiretap channel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源