论文标题

电影:长期时间序列预测的频率改进的Legendre内存模型

FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting

论文作者

Zhou, Tian, Ma, Ziqing, wang, Xue, Wen, Qingsong, Sun, Liang, Yao, Tao, Yin, Wotao, Jin, Rong

论文摘要

最近的研究表明,诸如RNN和变形金刚之类的深度学习模型为长期预测时间序列带来了巨大的性能增长,因为它们有效地利用了历史信息。但是,我们发现,如何在神经网络中保存历史信息,同时避免过度适应历史上的噪音,这仍然有很大的改进空间。解决此问题可以更好地利用深度学习模型的功能。 To this end, we design a \textbf{F}requency \textbf{i}mproved \textbf{L}egendre \textbf{M}emory model, or {\bf FiLM}: it applies Legendre Polynomials projections to approximate historical information, uses Fourier projection to remove noise, and adds a low-rank approximation to speed up computation.我们的实证研究表明,所提出的膜分别通过(\ textbf {20.3 \%},\ textbf {22.6 \%})显着提高了最新模型和单变量长期预测的准确性。我们还证明,这项工作中开发的表示模块可以用作一般插件,以提高其他深度学习模块的长期预测性能。代码可从https://github.com/tianzhou2011/film/获得。

Recent studies have shown that deep learning models such as RNNs and Transformers have brought significant performance gains for long-term forecasting of time series because they effectively utilize historical information. We found, however, that there is still great room for improvement in how to preserve historical information in neural networks while avoiding overfitting to noise presented in the history. Addressing this allows better utilization of the capabilities of deep learning models. To this end, we design a \textbf{F}requency \textbf{i}mproved \textbf{L}egendre \textbf{M}emory model, or {\bf FiLM}: it applies Legendre Polynomials projections to approximate historical information, uses Fourier projection to remove noise, and adds a low-rank approximation to speed up computation. Our empirical studies show that the proposed FiLM significantly improves the accuracy of state-of-the-art models in multivariate and univariate long-term forecasting by (\textbf{20.3\%}, \textbf{22.6\%}), respectively. We also demonstrate that the representation module developed in this work can be used as a general plug-in to improve the long-term prediction performance of other deep learning modules. Code is available at https://github.com/tianzhou2011/FiLM/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源