论文标题

交易位置复杂性与坐标网络中的深度

Trading Positional Complexity vs. Deepness in Coordinate Networks

论文作者

Zheng, Jianqiao, Ramasinghe, Sameera, Li, Xueqian, Lucey, Simon

论文摘要

众所周知,通过编码坐标位置作为一系列傅立叶功能,基于坐标的MLP受益 - 在保留高频信息方面。迄今为止,这些位置编码有效性的基本原理主要通过傅立叶镜头进行了研究。在本文中,我们努力通过表明确实可以将替代性的非嵌入功能用于位置编码来扩大这种理解。此外,我们表明它们的性能完全取决于嵌入式矩阵的稳定等级与嵌入式坐标之间的距离保存之间的权衡。我们进一步确定,现在无处不在的傅立叶特征映射是一种特殊情况,可满足这些条件。因此,我们提出了一种更通用的理论,可以通过转移的基础函数来分析位置编码。此外,我们认为,采用更复杂的位置编码(与模式数量成倍扩展)仅需要一个线性(而不是深)坐标函数来实现可比的性能。违反直觉,我们证明了网络深度的交易位置嵌入复杂性比当前的最新时间更快。尽管有额外的嵌入复杂性。为此,我们开发了必要的理论公式,并从经验上验证了我们的理论主张在实践中的存在。

It is well noted that coordinate-based MLPs benefit -- in terms of preserving high-frequency information -- through the encoding of coordinate positions as an array of Fourier features. Hitherto, the rationale for the effectiveness of these positional encodings has been mainly studied through a Fourier lens. In this paper, we strive to broaden this understanding by showing that alternative non-Fourier embedding functions can indeed be used for positional encoding. Moreover, we show that their performance is entirely determined by a trade-off between the stable rank of the embedded matrix and the distance preservation between embedded coordinates. We further establish that the now ubiquitous Fourier feature mapping of position is a special case that fulfills these conditions. Consequently, we present a more general theory to analyze positional encoding in terms of shifted basis functions. In addition, we argue that employing a more complex positional encoding -- that scales exponentially with the number of modes -- requires only a linear (rather than deep) coordinate function to achieve comparable performance. Counter-intuitively, we demonstrate that trading positional embedding complexity for network deepness is orders of magnitude faster than current state-of-the-art; despite the additional embedding complexity. To this end, we develop the necessary theoretical formulae and empirically verify that our theoretical claims hold in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源