论文标题
超导量子电路中的拓扑纠缠稳定
Topological Entanglement Stabilization in Superconducting Quantum Circuits
论文作者
论文摘要
量子系统的拓扑特性是凝结物理学中最有趣的新兴现象之一。拓扑系统的关键特性是对称局部噪声的对称性保护的鲁棒性。实验证明了各种量子系统中物质的拓扑阶段。但是,使用此类模式稳定量子相关性的鲁棒性仍然是一个高度渴望的里程碑。在这项工作中,我们提出了一个使用拓扑模式来稳定完全纠缠量子状态的概念,并证明了纠缠在参数波动方面的稳定性。具体而言,我们看到纠缠在拓扑非平凡的政权中与参数波动保持稳定,而在琐事状态中的纠缠非常敏感。我们根据耦合的超导谐振器和Qubits的实验现实和详细的建议来补充我们的计划。我们的提案设定了一种新的方法,可以通过自下而上的实验方法在电路参数中生成具有鲁N的长寿命量子模式,该方法依靠易于工程的构建块。
Topological properties of quantum systems are one of the most intriguing emerging phenomena in condensed matter physics. A crucial property of topological systems is the symmetry-protected robustness towards local noise. Experiments have demonstrated topological phases of matter in various quantum systems. However, using the robustness of such modes to stabilize quantum correlations is still a highly sought-after milestone. In this work, we put forward a concept of using topological modes to stabilize fully entangled quantum states, and we demonstrate the stability of the entanglement with respect to parameter fluctuations. Specifically, we see that entanglement remains stable against parameter fluctuations in the topologically non-trivial regime, while entanglement in the trivial regime is highly susceptible. We supplement our scheme with an experimentally realistic and detailed proposal based on coupled superconducting resonators and qubits. Our proposal sets a novel approach for generating long-lived quantum modes with robustness towards disorder in the circuit parameters via a bottom-up experimental approach relying on easy-to-engineer building blocks.