论文标题
估算具有截短边缘神经比估计的强透镜图像的温暖暗物质质量
Estimating the warm dark matter mass from strong lensing images with truncated marginal neural ratio estimation
论文作者
论文摘要
银河系强的强力透镜图像的精确分析提供了一种表征小规模暗物质光环的独特方法,并可以使我们能够发现暗物质成分的基本特性。最近,引力成像技术使检测一些沉重的Subhalos成为可能。但是,重力镜片包含许多Subhalos和视线光环,其微妙的烙印极为难以单独检测。现有的方法是在这一大量的阈值次阈值中,推断人口级别的参数通常在计算上很昂贵,或者需要将观测值压缩到手工制作的摘要统计数据中,例如残留物的功率谱。在这里,我们提出了第一条分析管道,以结合参数镜头模型和最近开发的基于神经模拟的推理技术,称为截短的边际神经比率估计(TMNRE),以约束直接从多个镜片图像的温暖暗物质halo质量函数截止量表。通过对模拟数据的概念验证应用程序,我们表明我们的方法可以通过边缘化对暗物质截止质量进行经验测试的推断,这是对大量逼真的遗传者的边缘化,这些遗物本身将是无法自我检测的,并且对镜头和源源参数不确定性不确定性。为了获得我们的结果,我们将包含的信号结合在一起,其中包含的一组图像中的信号与哈勃空间望远镜分辨率。我们的结果表明,TMNRE可以是一种有力的方法,可以在多键型制度中对温暖的暗物质施加严格的约束,这既与现有的镜头数据以及将由近距离望远镜交付的大量镜头相关。
Precision analysis of galaxy-galaxy strong gravitational lensing images provides a unique way of characterizing small-scale dark matter halos, and could allow us to uncover the fundamental properties of dark matter's constituents. Recently, gravitational imaging techniques made it possible to detect a few heavy subhalos. However, gravitational lenses contain numerous subhalos and line-of-sight halos, whose subtle imprint is extremely difficult to detect individually. Existing methods for marginalizing over this large population of sub-threshold perturbers to infer population-level parameters are typically computationally expensive, or require compressing observations into hand-crafted summary statistics, such as a power spectrum of residuals. Here, we present the first analysis pipeline to combine parametric lensing models and a recently-developed neural simulation-based inference technique called truncated marginal neural ratio estimation (TMNRE) to constrain the warm dark matter halo mass function cutoff scale directly from multiple lensing images. Through a proof-of-concept application to simulated data, we show that our approach enables empirically testable inference of the dark matter cutoff mass through marginalization over a large population of realistic perturbers that would be undetectable on their own, and over lens and source parameters uncertainties. To obtain our results, we combine the signal contained in a set of images with Hubble Space Telescope resolution. Our results suggest that TMNRE can be a powerful approach to put tight constraints on the mass of warm dark matter in the multi-keV regime, which will be relevant both for existing lensing data and in the large sample of lenses that will be delivered by near-future telescopes.