论文标题
动态恢复(可集成)$σ$ - 模型中的共形不变性
Dynamically restoring conformal invariance in (integrable) $σ$-models
论文作者
论文摘要
可集成的$λ$ -DEFERMED $σ$ - 模型的特征是基本的当前代数/coset模型CFT在无限级别以当前/parafermion双线性形式变形。我们将变形参数促进了作为额外坐标引入的时间的动态函数。可以想象,通过适当地限制它们,β-功能消失,因此$σ$ - 模型保持在保质状态。值得注意的是,在某些情况下,我们在具有单个甚至多个变形参数的情况下明确实现了这种情况。这些通常遵守非线性二阶普通微分方程的系统。它们通过原始$σ$ - 模型的RG流的固定点解决。此外,通过适当选择初始条件,我们甚至可以在RG固定点之间插值,因为时间从过去到远的未来变化。在本文中,我们将分析的扩展扩展到Yang-Baxter-巴克斯特 - 保姆变形PCM。
Integrable $λ$-deformed $σ$-models are characterized by an underlying current algebra/coset model CFT deformed, at the infinitesimal level, by current/parafermion bilinears. We promote the deformation parameters to dynamical functions of time introduced as an extra coordinate. It is conceivable that by appropriately constraining them, the beta-functions vanish and consequently the $σ$-model stays conformal. Remarkably, we explicitly materialize this scenario in several cases having a single and even multiple deformation parameters. These generically obey a system of non-linear second-order ordinary differential equations. They are solved by the fixed points of the RG flow of the original $σ$-model. Moreover, by appropriately choosing initial conditions we may even interpolate between the RG fixed points as the time varies from the far past to the far future.Finally, we present an extension of our analysis to the Yang--Baxter deformed PCMs.