论文标题

具有图形过滤的可扩展多视图聚类

Scalable Multi-view Clustering with Graph Filtering

论文作者

Liu, Liang, Chen, Peng, Luo, Guangchun, Kang, Zhao, Luo, Yonggang, Han, Sanchu

论文摘要

随着多源数据的爆炸性增长,近年来,多视图聚类引起了极大的关注。大多数现有的多视图方法在原始特征空间中运行,并且在很大程度上取决于原始特征表示的质量。此外,它们通常是为特征数据而设计的,而忽略了丰富的拓扑结构信息。因此,在本文中,我们提出了一个通用框架,将属性和图形数据集中在具有异质特征的情况下。它能够探索功能和结构之间的相互作用。具体而言,我们首先采用图形过滤技术来消除高频噪声以实现群集友好的平滑表示。为了应对可扩展性挑战,我们制定了一种新颖的采样策略来提高锚固质量。关于属性和图基准测试的广泛实验证明了我们在最新方法方面的优越性。

With the explosive growth of multi-source data, multi-view clustering has attracted great attention in recent years. Most existing multi-view methods operate in raw feature space and heavily depend on the quality of original feature representation. Moreover, they are often designed for feature data and ignore the rich topology structure information. Accordingly, in this paper, we propose a generic framework to cluster both attribute and graph data with heterogeneous features. It is capable of exploring the interplay between feature and structure. Specifically, we first adopt graph filtering technique to eliminate high-frequency noise to achieve a clustering-friendly smooth representation. To handle the scalability challenge, we develop a novel sampling strategy to improve the quality of anchors. Extensive experiments on attribute and graph benchmarks demonstrate the superiority of our approach with respect to state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源