论文标题

物理知情的LSTM网络用于蒸发冷却系统中的灵活性识别

Physics Informed LSTM Network for Flexibility Identification in Evaporative Cooling Systems

论文作者

Lahariya, Manu, Karami, Farzaneh, Develder, Chris, Crevecoeur, Guillaume

论文摘要

在能源密集型工业系统中,蒸发冷却过程可能会引入操作灵活性。这种灵活性是指系统能够偏离其计划的能源消耗的能力。确定灵活性,因此,设计控制能够确保有效且可靠的操作带来了巨大的挑战,这是由于工业系统的固有动力。最近,机器学习模型由于能够建模复杂的非线性行为而引起人们的注意,以确定灵活性。这项研究提出了基于机器学习的方法,将系统动态整合到机器学习模型(例如神经网络)中,以更好地遵守物理约束。我们定义和评估物理知情的长期术语记忆网络(PHYLSTM)和物理知情的神经网络(PHYNN),以识别蒸发冷却过程中的灵活性。这些物理学通知网络,在执行神经网络体系结构中的过程动力学时,近似控制输入与系统响应之间的时间相关关系。与基线神经网络(NN)相比,我们提出的PHYLSTM提供的系统响应估计误差少于2%,收敛次数不到一半,并准确估计了定义的灵活性指标。我们包括详细分析培训数据大小对我们提出模型的性能和优化的影响。

In energy intensive industrial systems, an evaporative cooling process may introduce operational flexibility. Such flexibility refers to a systems ability to deviate from its scheduled energy consumption. Identifying the flexibility, and therefore, designing control that ensures efficient and reliable operation presents a great challenge due to the inherently complex dynamics of industrial systems. Recently, machine learning models have attracted attention for identifying flexibility, due to their ability to model complex nonlinear behavior. This research presents machine learning based methods that integrate system dynamics into the machine learning models (e.g., Neural Networks) for better adherence to physical constraints. We define and evaluate physics informed long-short term memory networks (PhyLSTM) and physics informed neural networks (PhyNN) for the identification of flexibility in the evaporative cooling process. These physics informed networks approximate the time-dependent relationship between control input and system response while enforcing the dynamics of the process in the neural network architecture. Our proposed PhyLSTM provides less than 2% system response estimation error, converges in less than half iterations compared to a baseline Neural Network (NN), and accurately estimates the defined flexibility metrics. We include a detailed analysis of the impact of training data size on the performance and optimization of our proposed models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源