论文标题

一类具有快速周期性采样和小型状态依赖的白噪声的非线性系统的波动分析

Fluctuation analysis for a class of nonlinear systems with fast periodic sampling and small state-dependent white noise

论文作者

Dhama, Shivam, Pahlajani, Chetan D.

论文摘要

我们考虑了一个非线性微分方程,这是在小型依赖状态的大小$ \ varepsilon $的综合影响下,以及具有$δ$的快速周期性采样; $ 0 <\ varepsilon,δ\ ll 1 $。因此,每一个$δ$时间单位采集状态样本(测量值),并且状态的瞬时变化速率取决于其当前价值以及其最新样本。我们表明,由$ \ varepsilon(δ$)索引的随机随机过程可以近似为$ \ varepsilon,δ\ searrow 0 $,由普通的微分方程(ode),矢量字段通过替换最新的样本通过状态的当前值替换为近期样品而获得的矢量字段。接下来,我们分析了随机过程围绕限制颂歌的波动。我们的主要结果断言,对于$δ\ searrow 0 $的速度,以与$ \ varepsilon \ searrow 0 $相同的速度,或更快地,可以通过有限的随机差异方程(SDE)以适当的强(路径)sense(SDE)以适当的强(路径)接触。该SDE取决于$ \ varepsilon,δ\ searrow 0 $的确切速率。这里的关键贡献涉及计算有效的漂移项捕获噪声与采样SDE中的相互作用。结果基本上为感兴趣的随机过程提供了一阶扰动扩展以及误差估计。通过一个简单的示例讨论并通过数字说明与抽样的反馈控制系统的性能分析的连接。

We consider a nonlinear differential equation under the combined influence of small state-dependent Brownian perturbations of size $\varepsilon$, and fast periodic sampling with period $δ$; $0<\varepsilon, δ\ll 1$. Thus, state samples (measurements) are taken every $δ$ time units, and the instantaneous rate of change of the state depends on its current value as well as its most recent sample. We show that the resulting stochastic process indexed by $\varepsilon,δ$, can be approximated, as $\varepsilon,δ\searrow 0$, by an ordinary differential equation (ODE) with vector field obtained by replacing the most recent sample by the current value of the state. We next analyze the fluctuations of the stochastic process about the limiting ODE. Our main result asserts that, for the case when $δ\searrow 0$ at the same rate as, or faster than, $\varepsilon \searrow 0$, the rescaled fluctuations can be approximated in a suitable strong (pathwise) sense by a limiting stochastic differential equation (SDE). This SDE varies depending on the exact rates at which $\varepsilon,δ\searrow 0$. The key contribution here involves computing the effective drift term capturing the interplay between noise and sampling in the limiting SDE. The results essentially provide a first-order perturbation expansion, together with error estimates, for the stochastic process of interest. Connections with the performance analysis of feedback control systems with sampling are discussed and illustrated numerically through a simple example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源