论文标题
结合低剂量CT重建的深度学习和自适应稀疏建模
Combining Deep Learning and Adaptive Sparse Modeling for Low-dose CT Reconstruction
论文作者
论文摘要
基于传统模型的图像重建(MBIR)方法将向前和噪声模型与简单对象先验结合在一起。深度学习方法在图像重建中的最新应用提供了一种成功的数据驱动方法,可在测量下采样或各种类型的噪声中重建图像时应对挑战。在这项工作中,我们提出了X射线计算机断层扫描(CT)图像重建的混合监督的无监管的学习框架。提出的学习配方既利用稀疏性或无监督的学习先验和神经网络重建者,以模拟固定点迭代过程。每个提议的训练块由确定性的MBIR求解器和神经网络组成。信息通过这两个重建器并行流动,然后最佳组合,并将多个此类块级联成型以形成重建管道。我们证明了这种学识渊博的混合模型对低剂量CT图像重建的功效,并使用有限的培训数据,我们使用NIH AAPM Mayo诊所低剂量CT CT Grand Challenge数据集进行培训和测试。在我们的实验中,我们研究了受监督的深网重建器和基于稀疏表示的(无监督)学会或分析先验的组合。我们的结果表明,与最近的重建方法相比,所提出的框架的表现有希望。
Traditional model-based image reconstruction (MBIR) methods combine forward and noise models with simple object priors. Recent application of deep learning methods for image reconstruction provides a successful data-driven approach to addressing the challenges when reconstructing images with measurement undersampling or various types of noise. In this work, we propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction. The proposed learning formulation leverages both sparsity or unsupervised learning-based priors and neural network reconstructors to simulate a fixed-point iteration process. Each proposed trained block consists of a deterministic MBIR solver and a neural network. The information flows in parallel through these two reconstructors and is then optimally combined, and multiple such blocks are cascaded to form a reconstruction pipeline. We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data, where we use the NIH AAPM Mayo Clinic Low Dose CT Grand Challenge dataset for training and testing. In our experiments, we study combinations of supervised deep network reconstructors and sparse representations-based (unsupervised) learned or analytical priors. Our results demonstrate the promising performance of the proposed framework compared to recent reconstruction methods.