论文标题

想法生成和评估的工具箱:机器学习,数据驱动和竞赛驱动的方法来支持想法生成

A toolbox for idea generation and evaluation: Machine learning, data-driven, and contest-driven approaches to support idea generation

论文作者

Ayele, Workneh Yilma

论文摘要

由于社交媒体,传感器,学术文献,专利,在线发布的不同形式的文档,数据库,产品手册等产生的数字数据的增长,数据的重要性和丰富性正在增加。各种数据源还可以用于产生思想,但是,除了偏见,可用数字数据的大小是对手动分析的主要挑战。因此,人机相互作用对于产生有价值的想法至关重要,在机器学习和数据驱动的技术中产生数据并提供人类感知的模式。但是,使用机器学习和数据驱动方法来生成想法是一个相对较新的领域。此外,还可以使用以竞赛驱动的思想产生和评估来刺激创新。本文的结果和贡献可以看作是想法生成技术的工具箱,包括数据驱动和机器学习技术的列表,并具有相应的数据源和模型,以支持创意生成。此外,结果包括两个模型,一种方法和一种框架,以更好地支持数据驱动和竞争驱动的想法生成。这些人工制品的受益者是数据和知识工程,数据挖掘项目经理和创新代理商的实践者。创新代理包括孵化器,竞赛组织者,顾问,创新加速器和行业。由于所提出的人工制品包括通过AI技术增强的过程模型,因此以人为中心的AI是一个有前途的研究领域,可以为人工制品的进一步发展做出贡献并促进创造力。

The significance and abundance of data are increasing due to the growing digital data generated from social media, sensors, scholarly literature, patents, different forms of documents published online, databases, product manuals, etc. Various data sources can be used to generate ideas, yet, in addition to bias, the size of the available digital data is a major challenge when it comes to manual analysis. Hence, human-machine interaction is essential for generating valuable ideas where machine learning and data-driven techniques generate patterns from data and serve human sense-making. However, the use of machine learning and data-driven approaches to generate ideas is a relatively new area. Moreover, it is also possible to stimulate innovation using contest-driven idea generation and evaluation. The results and contributions of this thesis can be viewed as a toolbox of idea-generation techniques, including a list of data-driven and machine learning techniques with corresponding data sources and models to support idea generation. In addition, the results include two models, one method and one framework, to better support data-driven and contest- driven idea generation. The beneficiaries of these artefacts are practitioners in data and knowledge engineering, data mining project managers, and innovation agents. Innovation agents include incubators, contest organizers, consultants, innovation accelerators, and industries. Since the proposed artefacts consist of process models augmented with AI techniques, human-centred AI is a promising area of research that can contribute to the artefacts' further development and promote creativity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源