论文标题
共同优化部分卸载和SFC映射:一种合作的双手加固学习方法
On Jointly Optimizing Partial Offloading and SFC Mapping: A Cooperative Dual-agent Deep Reinforcement Learning Approach
论文作者
论文摘要
多访问边缘计算(MEC)和网络功能虚拟化(NFV)是支持新兴的物联网应用程序,尤其是那些计算密集型的技术。在启用NFV的MEC环境中,服务功能链(SFC),即可以在MEC服务器上映射一组有序的虚拟网络功能(VNF)。移动设备(MDS)可以卸载计算密集型应用程序,该应用程序可以由SFCS代表,完全或部分地用于MEC服务器以进行远程执行。本文研究了启用NFV的MEC系统中的部分卸载和SFC映射关节优化(POSMJO)问题,其中可以将传入的任务分为两个部分,一个用于本地执行,另一个用于远程执行。目的是将长期的平均成本最小化,这是执行延迟,MD的能耗和边缘计算的使用费用的组合。这个问题包括两个密切相关的决策步骤,即任务分区和VNF安置,这是高度复杂且挑战性的。为了解决这个问题,我们提出了一种合作的双手强化增强学习(CDADRL)算法,在那里我们设计了一个框架,可在两种代理之间进行相互作用。仿真结果表明,根据累积和平均发作性奖励,该算法的表现优于深钢筋学习算法的三种组合,并且超过了许多基线算法在执行延迟,能源消耗,用法电荷方面。
Multi-access edge computing (MEC) and network function virtualization (NFV) are promising technologies to support emerging IoT applications, especially those computation-intensive. In NFV-enabled MEC environment, service function chain (SFC), i.e., a set of ordered virtual network functions (VNFs), can be mapped on MEC servers. Mobile devices (MDs) can offload computation-intensive applications, which can be represented by SFCs, fully or partially to MEC servers for remote execution. This paper studies the partial offloading and SFC mapping joint optimization (POSMJO) problem in an NFV-enabled MEC system, where an incoming task can be partitioned into two parts, one for local execution and the other for remote execution. The objective is to minimize the average cost in the long term which is a combination of execution delay, MD's energy consumption, and usage charge for edge computing. This problem consists of two closely related decision-making steps, namely task partition and VNF placement, which is highly complex and quite challenging. To address this, we propose a cooperative dual-agent deep reinforcement learning (CDADRL) algorithm, where we design a framework enabling interaction between two agents. Simulation results show that the proposed algorithm outperforms three combinations of deep reinforcement learning algorithms in terms of cumulative and average episodic rewards and it overweighs a number of baseline algorithms with respect to execution delay, energy consumption, and usage charge.