论文标题

认证:神经网络全球公平性的框架

CertiFair: A Framework for Certified Global Fairness of Neural Networks

论文作者

Khedr, Haitham, Shoukry, Yasser

论文摘要

我们考虑神经网络(NN)模型是否满足全球个人公平的问题。个人公平表明,与一定任务相似的人应与决策模型相似地对待。在这项工作中,我们有两个主要目标。首先是构建一个验证者,该验证者检查分类任务中给定nn的公平性属性是否保留给定nn,或者如果违反违规情况,则提供反例,即,如果所有类似的个体都相同,则模型是公平的,并且如果一对相似的个体的分类不同,则不公平。为此,我们使用基于距离的相似性指标构建了一个声音和完整的验证器,该声音和完整的验证器可验证Relu NN分类器的全球个人公平性能。本文的第二个目标是提供一种从不公平(偏见)数据中培训公平的NN分类器的方法。我们建议在培训期间使用公平损失,以实现类似人的公平结果。然后,我们就由此产生的NN的公平性提供了可证明的界限。我们对公开可用的常用公平数据集进行了实验,我们表明可以将全球个人公平性提高96%,而不会显着下降测试准确性。

We consider the problem of whether a Neural Network (NN) model satisfies global individual fairness. Individual Fairness suggests that similar individuals with respect to a certain task are to be treated similarly by the decision model. In this work, we have two main objectives. The first is to construct a verifier which checks whether the fairness property holds for a given NN in a classification task or provide a counterexample if it is violated, i.e., the model is fair if all similar individuals are classified the same, and unfair if a pair of similar individuals are classified differently. To that end, We construct a sound and complete verifier that verifies global individual fairness properties of ReLU NN classifiers using distance-based similarity metrics. The second objective of this paper is to provide a method for training provably fair NN classifiers from unfair (biased) data. We propose a fairness loss that can be used during training to enforce fair outcomes for similar individuals. We then provide provable bounds on the fairness of the resulting NN. We run experiments on commonly used fairness datasets that are publicly available and we show that global individual fairness can be improved by 96 % without significant drop in test accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源