论文标题

GDSREC:基于图的分散协作过滤以进行社会建议

GDSRec: Graph-Based Decentralized Collaborative Filtering for Social Recommendation

论文作者

Chen, Jiajia, Xin, Xin, Liang, Xianfeng, He, Xiangnan, Liu, Jun

论文摘要

基于用户项目交互和用户用户社会关系生成建议是基于Web的系统中的常见用例。这些连接可以自然地表示为图形结构化数据,从而利用图形神经网络(GNN)进行社会建议已成为一个有希望的研究方向。但是,现有的基于图的方法无法考虑用户的偏差偏移(项目)。例如,挑剔的用户的低评分可能并不意味着对该项目的负面态度,因为用户倾向于在常见情况下分配低评分。应将此类统计数据视为图形建模程序。虽然过去的一些工作考虑了偏见,但我们认为这些提出的方法仅将其视为标量,而无法捕获隐藏在数据中的完整偏见信息。此外,用户之间的社交联系也应该是可区分的,以便具有类似项目偏好的用户相互影响。为此,我们提出了基于图的分散协作过滤以进行社会推荐(GDSREC)。 GDSREC将偏见视为向量,并将其融合到学习用户和项目表示的过程中。统计偏差偏移是由分散的邻里聚合捕获的,而社交连接强度则根据偏好相似性定义,然后将其纳入模型设计中。我们在两个基准数据集上进行了广泛的实验,以验证所提出的模型的有效性。实验结果表明,与最新相关的基线相比,拟议的GDSREC取得了卓越的性能。我们的实现可在\ url {https://github.com/meicrs/gdsrec}中获得。

Generating recommendations based on user-item interactions and user-user social relations is a common use case in web-based systems. These connections can be naturally represented as graph-structured data and thus utilizing graph neural networks (GNNs) for social recommendation has become a promising research direction. However, existing graph-based methods fails to consider the bias offsets of users (items). For example, a low rating from a fastidious user may not imply a negative attitude toward this item because the user tends to assign low ratings in common cases. Such statistics should be considered into the graph modeling procedure. While some past work considers the biases, we argue that these proposed methods only treat them as scalars and can not capture the complete bias information hidden in data. Besides, social connections between users should also be differentiable so that users with similar item preference would have more influence on each other. To this end, we propose Graph-Based Decentralized Collaborative Filtering for Social Recommendation (GDSRec). GDSRec treats the biases as vectors and fuses them into the process of learning user and item representations. The statistical bias offsets are captured by decentralized neighborhood aggregation while the social connection strength is defined according to the preference similarity and then incorporated into the model design. We conduct extensive experiments on two benchmark datasets to verify the effectiveness of the proposed model. Experimental results show that the proposed GDSRec achieves superior performance compared with state-of-the-art related baselines. Our implementations are available in \url{https://github.com/MEICRS/GDSRec}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源