论文标题

基于设置的元互插款,用于几个任务元学习

Set-based Meta-Interpolation for Few-Task Meta-Learning

论文作者

Lee, Seanie, Andreis, Bruno, Kawaguchi, Kenji, Lee, Juho, Hwang, Sung Ju

论文摘要

元学习方法使机器学习系统能够通过利用相关任务的知识来适应新任务。但是,在元测试过程中,仍然需要大量的元训练任务才能在元测试过程中看不见任务,这引入了仅由于各种原因,包括少数任务的现实世界问题的关键瓶颈,包括构建任务的困难和成本。最近,已经提出了几种任务增强方法来使用特定领域的知识来解决此问题,以设计增强技术以密封元训练任务分布。但是,这种对特定领域知识的依赖使这些方法不适用其他域。虽然基于歧管混合的任务增强方法是域 - 敏锐的,但我们从经验上发现它们在非图像域上无效。为了应对这些局限性,我们提出了一种新型的域 - 不合时宜的任务增强方法,即元互化方法,该方法利用表达性神经集功能来密集使用双光线优化的元训练任务分布。我们从经验上验证了跨越各个领域的八个数据集上的元间隔效果,例如图像分类,分子属性预测,文本分类和语音识别。在实验上,我们表明,元互助始终优于所有相关基准。从理论上讲,我们证明了与设定函数的任务插值将元学习器正规化以改善概括。

Meta-learning approaches enable machine learning systems to adapt to new tasks given few examples by leveraging knowledge from related tasks. However, a large number of meta-training tasks are still required for generalization to unseen tasks during meta-testing, which introduces a critical bottleneck for real-world problems that come with only few tasks, due to various reasons including the difficulty and cost of constructing tasks. Recently, several task augmentation methods have been proposed to tackle this issue using domain-specific knowledge to design augmentation techniques to densify the meta-training task distribution. However, such reliance on domain-specific knowledge renders these methods inapplicable to other domains. While Manifold Mixup based task augmentation methods are domain-agnostic, we empirically find them ineffective on non-image domains. To tackle these limitations, we propose a novel domain-agnostic task augmentation method, Meta-Interpolation, which utilizes expressive neural set functions to densify the meta-training task distribution using bilevel optimization. We empirically validate the efficacy of Meta-Interpolation on eight datasets spanning across various domains such as image classification, molecule property prediction, text classification and speech recognition. Experimentally, we show that Meta-Interpolation consistently outperforms all the relevant baselines. Theoretically, we prove that task interpolation with the set function regularizes the meta-learner to improve generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源